skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dwyer, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Code documentation is a critical artifact of software development, bridging human understanding and machine- readable code. Beyond aiding developers in code comprehension and maintenance, documentation also plays a critical role in automating various software engineering tasks, such as test oracle generation (TOG). In Java, Javadoc comments offer structured, natural language documentation embedded directly within the source code, typically describing functionality, usage, parameters, return values, and exceptional behavior. While prior research has explored the use of Javadoc comments in TOG alongside other information, such as the method under test (MUT), their potential as a stand-alone input source, the most relevant Javadoc components, and guidelines for writing effective Javadoc comments for automating TOG remain less explored. In this study, we investigate the impact of Javadoc comments on TOG through a comprehensive analysis. We begin by fine-tuning 10 large language models using three different prompt pairs to assess the role of Javadoc comments alongside other contextual information. Next, we systematically analyze the impact of different Javadoc comment’s components on TOG. To evaluate the generalizability of Javadoc comments from various sources, we also generate them using the GPT-3.5 model. We perform a thorough bug detection study using Defects4J dataset to understand their role in real-world bug detection. Our results show that incorporating Javadoc comments improves the accuracy of test oracles in most cases, aligning closely with ground truth. We find that Javadoc comments alone can match or even outperform approaches that utilize the MUT implementation. Additionally, we identify that the description and the return tag are the most valuable components for TOG. Finally, our approach, when using only Javadoc comments, detects between 19% and 94% more real-world bugs in Defects4J than prior methods, establishing a new state-of-the-art. To further guide developers in writing effective documentation, we conduct a detailed qualitative study on when Javadoc comments are helpful or harmful for TOG. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  2. Abstract Deep Neural Networks (DNNs) are increasingly deployed in critical applications, where ensuring their safety and robustness is paramount. We present$$_\text {CAV25}$$ CAV 25 , a high-performance DNN verification tool that uses the DPLL(T) framework and supports a wide-range of network architectures and activation functions. Since its debut in VNN-COMP’23, in which it achieved the New Participant Award and ranked 4th overall,$$_\text {CAV25}$$ CAV 25 has advanced significantly, achieving second place in VNN-COMP’24. This paper presents and evaluates the latest development of$$_\text {CAV25}$$ CAV 25 , focusing on the versatility, ease of use, and competitive performance of the tool.$$_\text {CAV25}$$ CAV 25 is available at:https://github.com/dynaroars/neuralsat. 
    more » « less
    Free, publicly-accessible full text available July 22, 2026
  3. Free, publicly-accessible full text available April 26, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. There is a growing trend toward AI systems interacting with humans to revolutionize a range of application domains such as healthcare and transportation. However, unsafe human-machine interaction can lead to catastrophic failures. We propose a novel approach that predicts future states by accounting for the uncertainty of human interaction, monitors whether predictions satisfy or violate safety requirements, and adapts control actions based on the predictive monitoring results. Specifically, we develop a new quantitative predictive monitor based on Signal Temporal Logic with Uncertainty (STL-U) to compute a robustness degree interval, which indicates the extent to which a sequence of uncertain predictions satisfies or violates an STL-U requirement. We also develop a new loss function to guide the uncertainty calibration of Bayesian deep learning and a new adaptive control method, both of which leverage STL-U quantitative predictive monitoring results. We apply the proposed approach to two case studies: Type 1 Diabetes management and semi-autonomous driving. Experiments show that the proposed approach improves safety and effectiveness in both case studies. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  6. Research development professionals at the University of Nebraska-Lincoln (UNL) used the Center for Advancing Research Impact in Society (ARIS) Broader Impacts (BI) Toolkit with early-career faculty preparing grant proposals for the National Science Foundation’s Faculty Early Career Development Program (CAREER). This prestigious career-development funding mechanism places unique emphasis on the integration of research and education, positioning awardees to enhance the impact of their research programs through education initiatives like curriculum development, outreach, and community engagement. However, many early-career faculty lack experience or training to develop robust education plans that are thoughtfully aligned with and responsive to their research. With the aim of developing practical ways to help faculty gain these skills, the study team used mixed methods to analyze the integration of research and education in CAREER proposals submitted by UNL faculty. These methods included using the ARIS BI Rubric to evaluate the proposals, convening two panel review discussions, and interviewing principal investigators about their ARIS BI Toolkit use and approach to research-education integration. Case study findings reveal that while effective and impactful integration can take many forms, early-career faculty and those who support them can utilize the ARIS BI Toolkit strategically to strengthen this aspect of grant proposals, positioning faculty to write well-integrated CAREER proposals and potentially contributing to long-term grant-writing and research program success. 
    more » « less
    Free, publicly-accessible full text available November 13, 2025
  7. Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interests in developing effective and scalable DNN verification techniques and tools. Recent developments in DNN verification have highlighted the potential of constraint-solving approaches that combine abstraction techniques with SAT solving. Abstraction approaches are effective at precisely encode neuron behavior when it is linear, but they lead to overapproximation and combinatorial scaling when behavior is non-linear. SAT approaches in DNN verification have incorporated standard DPLL techniques, but have overlooked important optimizations found in modern SAT solvers that help them scale on industrial benchmarks. In this paper, we present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior – these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully- connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including 𝛼-𝛽-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively. 
    more » « less
  8. Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interest in developing effective and scalable DNN verification techniques and tools. Recent developments in DNN verification have highlighted the potential of constraint-solving approaches that combine abstraction techniques with SAT solving. Abstraction approaches are effective at precisely encoding neuron behavior when it is linear, but they lead to overapproximation and combinatorial scaling when behavior is non-linear. SAT approaches in DNN verification have incorporated standard DPLL techniques, but have overlooked important optimizations found in modern SAT solvers that help them scale on industrial benchmarks. In this paper, we present VeriStable, a novel extension of the recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior – these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully- connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including α-β-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively. 
    more » « less